
% ~t 13~t. AX (t) = AX o + 2 (l - -  ~) o------~ 

As is evident, kx(t) increases in proportion to the time t and the amplitude of the plastic 
wave ~P. 
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NUMERICAL ANALYSIS OF THE NONLINEAR STABILITY OF 

VIBRATIONS IN A PLATE LYING ON A LAYER OF VISCOUS, 

COMPRESSIBLE LIQUID 

V. N. Belonenko, O. Yu. Dinartsev, and 
A. B. Mosolov UDC 532.5 

Problems related to the stability of vibrations of mechanical systems that are in con- 
tact with a viscous, compressible liquid often arise in many areas of science, engineering, 
and contemporary production. A typical example is the problem concerning the stability of 
heavily loaded friction nodes under conditions of increased vibration. 

In orderto take into account the compressibility of liquid described by the Newtonian 
model with linear viscosity, one must consider both the shearing viscous stresses and the 
volumetric viscous stresses (which is usually not the case) [i]. The assumption that the 
coefficient of volumetric viscosity is zero is in most cases unjustified, and for some 
liquids the coefficient of volumetric viscosity can be many times (sometimes many orders) 
greater than the coefficient of ordinary shearing viscosity. Also, when the forces that 
act on a liquid are intense, one cannot ignore the dissipation of energy for a change in 
volume. For vibrational processes that are accompanied by a change in volume, the effect 
of volumetric viscosity can be very substantial. 

i. Formulation of the Problem and a Determination of Equations. We will consider the 
one-dimensional problem of forced vibrations in a massive layer S that lies on a layer of 
viscous compressible liquid (Fig. I) acted on by a periodic force F(t). 

The basic equations of the problem are: 
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the equation of motion 

4 ~ z . t  mlu=p--  ~ l v + E , l , ) T - - m g + F ( t ) ;  
! (i.i) 

and the equation of continuity (conservation of mass of the liquid) 

pl = ~ I  o. (1.2) 

Here, m is the mass per unit length of the layer S; s i 0 are the current and initial 
thicknesses of the gap; Q(t), P0 are the current and initial densities of the liquid; p is 
the pressure in the liquid layer; QV and Ds are the coefficients of volumetric and shearing 
viscosity; and g is the acceleration due to gravity. 

If there is a discontinuity in the solidity (a break between layer S and the liquid 
layer), then Eq. (1.2) is no longer satisfied. 

l,'(t) = ( ~ , s i f i ( o t  - -  o ~  - -  P 0 ,  . ~  = ~ ,  - -  rag,. (1.3) 

The force is 

where P0 is the atmospheric pressure; m = 2~; 9 is the frequency of the force. It is 
assumed that 4s c -i << I, where c is the velocity of sound in the liquid. 

For high pressures (under isothermic conditions), many liquids will satisfy the Tait 
equation of state [2, 3] 

(1.4) 

This dependence is also used in our study, and it is assumed that layer S may lose contact 
with the liquid during motion (this occurs when the pressure in the liquid goes to zero). 
It then follows that the pressure p in Eq. (i.I) must take the form 

p = P(~h(e~) ) ,  ~ = ~opo/~, ( 1 . 5 )  

where h is the Heaviside function. 

The coefficient of shearing viscosity as a function of the pressure behaves in corres- 
pondence with the Barus law [4], and a similar expression is used for the coefficient of 
volumetric viscosity [5] 

~' = %0 exp (%Ap) h (P)~ Ap = p - -  Po, ~V = nv o exp (avAp) h(P). (1.6) 

Equations (1.1)-(1.6) fully describe the problem of vibrations of a layer S and can be 
directly used for a numerical analysis of the stability of motion. However, for many liquids, 
such an analysis cannot be done because of the lack of data on the coefficients of viscosity 
and compressibility as functions of the state parameters. Liquid lubricants have been the 
most thoroughly analyzed in this respect, and, therefore, we will use data for a certain 
type of machine oil (AU spindle oil at 40~ [3, 5]: P0 = 894.3 Kg'm -3, ~V m =s = 0.02018 
MPa -l, A = 0.08264, B = 128 MPa, c = 1388.8 m'sec -z, qs0 = 15.62 MPa-sec, qV0 = ~qs0" It 

is assumed that P0 = 0.i MPa, s = i00 Kg'm -I, ~ = i kHz. 

The quantity of the volumetric viscosity strongly depends on the actual chemical composi- 
tion of the oil. Introduction of the corresponding impurities in [6] can change ~ by 
several orders without changing the remaining parameters. Therefore, it is natural to 
consider the dimensionless quantity ~ as a variable parameter and to investigate its effect 
on the stability of the vibrations of the layer. 

614 



2. Analysis Method. Assuming that x = ~is z = mt, y = i, 8 ~ ~, we will rewrite Eqs. 
(i.i), (1.2) [taking into account (1.3)-(1.6)] in the form of ~ dimensionless, autonomous 
system in 2~-periodic phase space (x, y, O)~R SX S1~ R$ = {(x, y) ~ R 2 I x~ 0} : 

x = f ( x ) ,  x =  ~ t =  1, ~ ( 2 . 1 )  
] 

I 

where  ] l ( x , y , O ) ~  y; f~(x, y , O ) =  a~(x)h(~(x)) - -_(~.+ ~ ) b y x - e e x p l ? ( ~ ( x )  - -  P ) l h ( ~ ( x ) ) + d s i n 8  - ~; 

]a(x, y, 9) ---- i; a =  (Po -S B)q; ~ = poq; b = ~,0~q; ? = (B -S po)av; d =  a~q; q = (talon2) -~; t h e  d o t  

d e n o t e s  d e r i v a t i o n  w i t h  r e s p e c t  t o  z;  and  r  i s  t h e  d i m e n s i o n l e s s  p r e s s u r e .  

F o r  an a n a l y s i s  o f  s y s t e m  ( 2 . 1 ) ,  we w i l l  u s e  t h e  Pozncare" ~ r e p r e s e n t a t i o n  m e t h o d ,  which  
a l l o w s  one  t o  o b t a i n  a v i s u a l  r e p r e s e n t a t i o n  f o r  t h e  d y n a m i c s  o f  t h e  s y s t e m .  F o r  a d e t e r -  

. / 
m i n a t i o n  o f  t h e  P o l n c a r e  r e p r e s e n t a t i o n ,  we w i l l  c o n s i d e r  t h e  t w o - d i m e n s i o n a l  s e c t i o n  F o f  
the three-dimensional phase space of the system. For example, one can select F ~ F 0 = 
{(x, y, 8)18 = 0}. The Poincare representation P: F 0 § F 0 is created by the flow St: 
R+2 x S I § R+2 x S1given by (2.1) and is determined in the follQwing way 

P(x, y ) =  ~ ~162 (x, y, 0)~ 

2 It is easy to show that the solution of (2.1) is where ~ is the projection onto R+. 

restricted for t ~ 0, and, therefore, the Poincare representation is determined globally. 

For dissipative systems it is known that the phase volume is compressed for motion. 
The rate of compression is % = divf. If I is constant, then one observes uniform, homo- 
geneous compression of the entire phase space. This case has been studied in detail in 
literature. 

For system (2.1) 

is a function of x and can go to zero when the layer S breaks away from the liquid and the 
system becomes Hamiltonian~ At this: stage, the phase space, according to Liouville's 
theorem, does not change. Nevertheless, on the average, the phase space is compressed 
after a cycle, and the Poincare representation compresses the area by r 0. Hence, one can 
expect that after the transitional state, the established motion in the phase space will 
occur along the "surface of lowest dimensionality" [7], and the trajectory of the system 
is attracted to some attractor. Well-known examples of the Lorentz model, the Duffing 
equation, or the nonlinear oscillator [7-11] indicate that the attractors are are extremely 
complicated. In the simplest case, they can be various limiting cycles (simply a point for 
the Poincare representation). 

We will specify the above. The point M is called a stable, fixed point (the simple 
attractor) of the Poincare representation of period n if 

P~(M) = M, liDPn(M)II < i ,  

where Pn = PP. P, a]].H is the matrix norm that is induced by the ordinary Euclidean 
n 

norm in R 2. 

3r Numerical Experiment. One cannot construct the Poincare representation without 
the solution to system (2.1). It is necessary to use numerical techniques for obtaining 
this solution. There is an exception for small vibrations, when 

,1/(c~po) << i.  x = I § 8, 181 << I. 

F o r  s u c h  c o n d i t i o n s ,  s y s t e m  ( 2 . 1 )  i s  l i n e a r i z e d  and r e d u c e s  t o  a s i n g l e  s e c o n d - o r d e r  
e q u a t i o n  
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Its solution has the form 
8 = k s in(~ el- ~),: 

where 

Consequently, for the linearized case the Poincar~ representation has a stable, fixed point 
of the period 1 M = (i + k sine, k cosr 

For constructing the Poincare representation, the complete system (2.1) is integrated 
on an ES-1033 computer using the Runge-Kutta method with the variables ~ and d. THe range 
of change of d = (1.25-12.25)'10 -2 corresponds to a change in the amplitude of the loading 
over the limits o I = 50-600 MPa, and the parameter ~ varies within the range 1-10 s. 

The calculation results are shown in Figs. 2-5. In Fig. 2, one can find the general 
form for the behavior of the system in the coordinates o1(d) ~ ig ~, ~k is the range of 
change for the parameters that correspond to the periodic motion with a period k. It is 
interesting that in this case, in contrast to most cases considered in the literature on the 
subject, the loss in stability of the basic regular motion of period 1 (the range ~i) is 
related not to bifurcation of the doubling of the period but to the bifurcation of the 
tripling [ii]. A further transition to chaotic motion occurs through a cascade of 
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successive bifurcations of the doubling of the period, which gives cycles with periods of 6, 
12, 24, etc. The mathetical theory of these processes is given in [12], while physical 
and model examples of the effect of dissipation of nonlinearity on the behavior of autono- 
mous, stochastic systems is studied in [13, 14]. The boundary of the region for periodic 
motion (the region of stability) is shown in Fig. 2 with the dotted line, while the dashed 
line marks the beginning of the region for chaotic motion. 

On Fig. 3 in the phase plane (x, y = x), the simplest attractor of period 1 is illus- 
trated (the cycle I~ ~i, ig ~ = 2, o I = 160 MPa) along with the attractor with a period of 
3 that is obtained after tripling of the period (cycle 2 ~2, ig ~ = i, o I = 160 MPa). 

Calculations indicate that the regicn of chaotic motion contains inside itself extensive 
regions of periodic motion, some of which are given in Fig. 2. A close analysis shows that 
it is all the more possible to distinguish the narrow zones of period motion inside the 
hatched regions. Their mutual positioning is shown in Fig. 4, while the structure of the 
"cut" is indicated in Fig. 2 for oi = i00 MPa. 

Figure 5 gives a representation of the behavior of the periodic solutions inside the 
"chaotic" region for o I = 90 MPa. Cycles 1 (~ = 7"103 ) for period 1 pertains to region 
~[, where cycle 2 (~ = 6-10 ~) of period 2 is taken from ~2- Comparing Figs. 3 and 5, it 
is easy to see the difference in the mechanism of change for the period of the motion. In 
the first case, the change in the period is related to the bifurcation of the tripling and 
is associated with the "separation" of the branches from the cycle of period i, and in the 
second case, the periodic motion arises due to chaotic motion, and the motion is retarded 
in terms of the cycle without a change in topology. 

The data presented above show that the stability of the layer (in the absence of chaos) 
significantly depends on the parameter ~ (at least in the range 50 MPa < o I < 190 MPa), i.e., 
really on the volumetric viscosity of the liquid~ An increase in the volumetric viscosity 
on the whole has some effect on the stability of the system. 

1. 

2. 

3. 

4. 
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STRENGTH EVALUATION FOR A WELDED JOINT WITH A THIN YIELDING 

INCLUSION OF SMALL SIZE 

A. B. Borintsev, I. Yu. Devingtal', 
Yu. A. Neoberdin, and A. V. Shvetsov UDC 539.375 

i. The strength of a welded joint depends on properties of the fusion zone, which may 
have the form of a thin layer with reduced strength and deformation properties with produc- 
tion defects, including inclusions (see, e.g., [I, 2]). The object of study in this work is 
a plane model of a welded joint (Fig. i) which is two half-planes with elasticity moduli 
E+ and E_, and Poisson's ratio v+ and ~_ joined through a thin layer of thickness 2h; the E 
and 9 of the layer material either conform with the corresponding elasticity constants of 
one of the welded materials, or they are intermediate between them (e.g., average). In a 
certain area the layer is interrupted by an extraneous, relatively yielding, thin inclusion 
with elasticity modulus E 0. In the Oxy coordinate system shown in Fig. 1 the inclusion 
occupies the region IYl ! h0g(x), where a is half the inclusion length, h 0 is half the 
average inclusion thickness (h 0 << a), and g(x) is a dimensionless shape function for the 
inclusion whose average value in the section from -a to +a equals unity, i.e., [g(x)] a = i. 

Loading in the model being considered is accomplished at infinity with stress 
a~ = pf(x), where p is average stress in the section from -a to +a of axis x, and f(x) is a 
function of stress distribution inhomogeneity so that [(f(x)] a = I. 

By a relatively yielding inclusion we understand one which leads to positive stress 
concentration at its ends in the thin layer. The thin layer simulates the fusion zone with 
reduced (compared with the materials being welded) mechanical properties. Therefore, sources 
for the start of failure are hypothetically assumed to be parts of the layer adjacent to the 
ends of the inclusion where there is an unfavorable combination of a high stress level with 
a low level of strength and deformation properties of the layer metal. 

The aim of this work is determination of the critical value of applied load p for 
small inclusions which are often encountered in engineering practice, and estimation of their 
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